On the conjugacy classes in the orthogonal and symplectic groups over algebraically closed fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Approach to Conjugacy Classes in the Finite Symplectic and Orthogonal Groups

Markov chains are used to give a purely probabilistic way of understanding the conjugacy classes of the finite symplectic and orthogonal groups in odd characteristic. As a corollary of these methods one obtains a probabilistic proof of Steinberg’s count of unipotent matrices and generalizations of formulas of Rudvalis and Shinoda.

متن کامل

A Probabilistic Approach to Conjugacy Classes in the Finite Symplectic and Orthogonal Groups By Jason Fulman

Markov chains are used to give a purely probabilistic way of understanding the conjugacy classes of the finite symplectic and orthogonal groups in odd characteristic. As a corollary of these methods one obtains a probabilistic proof of Steinberg’s count of unipotent matrices and generalizations of formulas of Rudvalis and Shinoda.

متن کامل

McKay correspondence over non algebraically closed fields

The classical McKay correspondence for finite subgroups G of SL(2,C) gives a bijection between isomorphism classes of nontrivial irreducible representations of G and irreducible components of the exceptional divisor in the minimal resolution of the quotient singularity A2C/G. Over non algebraically closed fields K there may exist representations irreducible over K which split over K. The same i...

متن کامل

Noetherian algebras over algebraically closed fields

Let k be an uncountable algebraically closed field and let A be a countably generated left Noetherian k-algebra. Then we show that A⊗k K is left Noetherian for any field extension K of k. We conclude that all subfields of the quotient division algebra of a countably generated left Noetherian domain over k are finitely generated extensions of k. We give examples which show that A⊗k K need not re...

متن کامل

On the Tame Fundamental Groups of Curves over Algebraically Closed Fields of Characteristic > 0

We prove that the isomorphism class of the tame fundamental group of a smooth, connected curve over an algebraically closed eld k of characteristic p > 0 determines the genus g and the number n of punctures of the curve, unless (g, n) = (0, 0), (0, 1). Moreover, assuming g = 0, n > 1, and that k is the algebraic closure of the prime eld Fp, we prove that the isomorphism class of the tame fundam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expositiones Mathematicae

سال: 2010

ISSN: 0723-0869

DOI: 10.1016/j.exmath.2009.12.004